
// Smart Contract Security Assessment 11.26.2024 - 11.27.2024

Super Sale Deposit
Contract
Superseed

S u p e r Sa l e D e p o s i t C o n t ra c t - S u p e r s e e d

Prepared by: HALBORN

Last Updated 12/06/2024

Date of Engagement by: November 26th, 2024 - November 27th, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

4

CRITICAL

0

HIGH

1

MEDIUM

0

LOW

1

INFORMATIONAL

2

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Incorrect decimal handling
7.2 Missing escrow mechanism for deposited funds
7.3 Lack of validations during deployment and setup
7.4 Improper initialization of pausable contract

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

SuperSeed engaged Halborn to conduct a security assessment on their Solidity smart contract
beginning on November 26th, 2024 and ending on November 28th, 2024. The security assessment was
scoped to the smart contracts provided in the community-raise-contracts GitHub repository, commit
hashes, and further details can be found in the Scope section of this report.

The SuperSaleDeposit.sol contract is a token sale mechanism that allows whitelisted users to deposit
USDC or USDT to purchase tokens across predefined tiers with discounts.

2. A s s e s s m e n t S u m m a r y

The team at Halborn assigned one full-time security engineer to check the security of the smart
contracts. The security engineer is a blockchain and smart-contract security expert with advanced
penetration testing and smart-contract hacking skills, and deep knowledge of multiple blockchain
protocols.

The purpose of this assessment is to:

Ensure that smart contract functionality operates as intended
Identify potential security issues with the smart contracts

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which
were partially addressed by the SuperSeed team. The main ones were the following:

Scale _computeTokens results to 18 decimals to match ERC20 token standards and
prevent discrepancies during token claims.

Implement an escrow mechanism to securely hold funds in the contract until users
successfully claim their tokens.

https://github.com/superseed-xyz/community-raise-contracts

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the smart contract
assessment. While manual testing is recommended to uncover flaws in logic, process, and
implementation; automated testing techniques help enhance coverage of smart contracts and can
quickly identify items that do not follow security best practices. The following phases and associated
tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Smart contract manual code review and walkthrough to identify any logic issue.
Thorough assessment of safety and usage of critical Solidity variables and functions in scope that

could lead to arithmetic related vulnerabilities.
Manual testing by custom scripts.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Static Analysis of security for scoped contract, and imported functions. (Slither).

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: community-raise-contracts

(b) Assessed Commit ID: 06a0e79

(c) Items in scope:

contracts/SuperSaleDeposit.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

7ae2de9
092fc40
b3304a1

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

1

MEDIUM

0

LOW

1

INFORMATIONAL

2

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

INCORRECT DECIMAL HANDLING HIGH SOLVED - 12/01/2024

MISSING ESCROW MECHANISM FOR DEPOSITED FUNDS LOW
RISK ACCEPTED -

12/03/2024

https://github.com/superseed-xyz/community-raise-contracts
https://github.com/superseed-xyz/community-raise-contracts/commit/06a0e79791d00c411808a32938d44a78ac3a6ac5
https://github.com/superseed-xyz/community-raise-contracts/commit/7ae2de9f7384b6c6b68df2904747a0b1f136c66a
https://github.com/superseed-xyz/community-raise-contracts/commit/092fc40e75d95a1ab90a63218b176ba2107076a6
https://github.com/superseed-xyz/community-raise-contracts/commit/b3304a121e663f6b2c025e50270b4ce8bf512e04

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

LACK OF VALIDATIONS DURING DEPLOYMENT AND
SETUP

INFORMATIONAL SOLVED - 12/01/2024

IMPROPER INITIALIZATION OF PAUSABLE CONTRACT INFORMATIONAL SOLVED - 12/01/2024

7. F I N D I N G S & T EC H D E TA I L S

7.1 I N C O R R EC T D EC I M A L H A N D L I N G

// HIGH

Description
The _computeTokens function calculates the number of tokens to be allocated based on the input
_amount (in USDC/T) and _price (price per token in USDC/T).

While the function scales the inputs to perform calculations with high precision, there is a potential issue
with how decimals are handled:
1. Decimal Scaling of Inputs:

The _amount is assumed to have 6 decimals, as it represents USDC or USDT, which are standard
tokens with 6 decimal places.

The _price is scaled with a factor of 10^12 * 10^6 = 10^18 to maintain precision for calculations.

2. Resulting Decimal Precision:

The formula (_amount * 1e18) / _price produces a result scaled to 10^6 due to the difference in
the decimal factors between _amount and _price.

3. Potential Issue:

Tokens following the ERC20 standard typically have 18 decimals. The result of _computeTokens has
only 6 decimals, which could lead to discrepancies if the contract or external systems assume 18
decimals.

Specifically, if the quantities stored for users in the contract (e.g., purchasedTokens) are not
adjusted to align with the 18-decimal standard, it could cause issues when users attempt to claim
tokens. The tokens might be miscalculated, resulting in under-distribution.

Code Location

Code of _computeTokens function from SuperSaleDeposit contract:

Proof of Concept

functionfunction _computeTokens_computeTokens((uint256uint256 _amount _amount,, uint256uint256 _price _price)) privateprivate purepure rr
// multiply _amount by 10^(12+6)// multiply _amount by 10^(12+6)
// because the tier prices are already stored as USD 1 = 1 * 10^12// because the tier prices are already stored as USD 1 = 1 * 10^12
// adding 6 decimals precision for the token// adding 6 decimals precision for the token
returnreturn ((_amount _amount ** 1e181e18)) // _price _price;;

}}

540540
541541
542542
543543
544544
545545

S C E N A R I O

For this test, the emits a TokenPurchase event with the correct parameters unit test has been
reused by simply modifying it to print the actual amount of tokens purchased by the user
(userDepositInfo2.purchasedTokens) and compare it with the expected amount, explicitly using 6
decimals in the representation.

T E ST

R E S U LT

The tokens purchased by the user are stored with a precision of 6 decimal places.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N (7.5)

Recommendation
To ensure consistency and compatibility with the ERC20 standard, it is recommended to modify the
_computeTokens function to return results scaled to 18 decimals.

Remediation

SOLVED: The Superseed team has solved this issue by incrementing the precision of the _computeTokens
function result to 18 decimals.

Remediation Hash
https://github.com/superseed-xyz/community-raise-contracts/commit/7ae2de9f7384b6c6b68df290474
7a0b1f136c66a

 itit(("emits a TokensPurchase event with right parameters""emits a TokensPurchase event with right parameters",, (()) =>=> {{
consoleconsole..loglog(("%d - Purchased Tokens by user""%d - Purchased Tokens by user",,userDepositInfo2userDepositInfo2..purchapurcha
const expectedTokens const expectedTokens == ethers ethers..parseUnitsparseUnits(("33000""33000",, 66));;
consoleconsole..loglog(("%d - Expected Tokens with 6 decimals""%d - Expected Tokens with 6 decimals",, expectedTokens expectedTokens))
expectexpect((depositTxdepositTx))..toto..emitemit((superSaleDepositsuperSaleDeposit,, "TokensPurchase""TokensPurchase"))..withAwithA
 user1 user1..addressaddress,,
 depositAmount depositAmount..toStringtoString(()),,
 expectedTokens expectedTokens,, // expecting to still be in the first price tier // expecting to still be in the first price tier
 totalFundsCollected2 totalFundsCollected2..toStringtoString(()),,
));;

 }}));;

11
22
33
44
55
66
77
88
99
1010
1111

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://github.com/superseed-xyz/community-raise-contracts/commit/7ae2de9f7384b6c6b68df2904747a0b1f136c66a
https://github.com/superseed-xyz/community-raise-contracts/commit/7ae2de9f7384b6c6b68df2904747a0b1f136c66a

7. 2 M I S S I N G ES C ROW M EC H A N I S M FO R D E P O S I T E D F U N D S

// LOW

Description
The SuperSaleDeposit contract facilitates a token sale where users can deposit USDC or USDT to
purchase tokens at tiered prices with predefined caps. The goal is to ensure a transparent and secure
purchase process while managing deposited funds appropriately. However, the current implementation
transfers funds directly to the treasury address at the time of purchase, bypassing an escrow
mechanism.

An escrow mechanism would temporarily hold funds within the contract until the purchase process is
complete, including the successful claim of tokens by the user. Additionally, the current implementation
does not include a claim mechanism for tokens, meaning users deposit their funds without receiving any
tokens at the time of purchase.

This design increases the risk of rug-pull scenarios, where funds could be misappropriated or
mishandled before users receive their purchased tokens. It also undermines user trust, as funds are sent
to the treasury without users receiving anything in return at the time of deposit.

Code Location

Code of _purchase function from SuperSaleDeposit contract:

functionfunction _purchase_purchase((uint256uint256 _amountUSD _amountUSD,, IERC20 _asset IERC20 _asset,, UserDepositInfo UserDepositInfo ss
((uint256uint256 _resultingTokens _resultingTokens,, uint256uint256 _resultingTierIndex _resultingTierIndex)) ==

_calculateTokensToTransfer_calculateTokensToTransfer((_amountUSD_amountUSD,, totalFundsCollected totalFundsCollected,, act act

ifif ((_resultingTierIndex _resultingTierIndex >> activeTierIndex activeTierIndex)) {{
emitemit ActiveTierUpdateActiveTierUpdate((msgmsg..sendersender,, activeTierIndex activeTierIndex,, _resultingTi _resultingTi
activeTierIndex activeTierIndex == _resultingTierIndex _resultingTierIndex;;

}}

totalFundsCollected totalFundsCollected +=+= _amountUSD _amountUSD;;

_userDepositInfo_userDepositInfo..amountDeposited amountDeposited +=+= _amountUSD _amountUSD;;
_userDepositInfo_userDepositInfo..purchasedTokens purchasedTokens +=+= _resultingTokens _resultingTokens;;

_asset_asset..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, treasury treasury,, _amountUSD _amountUSD));;

emitemit TokensPurchaseTokensPurchase((msgmsg..sendersender,, _amountUSD _amountUSD,, _resultingTokens _resultingTokens,, total total

ifif ((_getRemainingCap_getRemainingCap(()) ==== 00)) {{
_pause_pause(());;

384384
385385
386386
387387
388388
389389
390390
391391
392392
393393
394394
395395
396396
397397
398398
399399
400400
401401
402402
403403
404404

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N (2.0)

Recommendation

It is recommended to introduce an escrow mechanism to securely hold deposited funds within the
contract during the purchase process. Funds should only be transferred to the treasury once the user has
claimed their tokens.

Remediation

RISK ACCEPTED: The Superseed team has accepted this risk for the following reasons:

"Holding the funds in the contract until claiming the tokens would require a complex cross-chain
communication mechanism because the token claim happens on Superseed mainnet which would
increase our attack surface considerably.
Also we’re not minting an NFT for each purchase because:

it would increase deposit transaction gas consumption
we’ve consulted with legal council and recommended we’re taking the no-nft approach"

emitemit SaleCompletedSaleCompleted(());;
}}

}}

405405
406406

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N

7. 3 L AC K O F VA L I DAT I O N S D U R I N G D E P LOY M E N T A N D

S E T U P

// INFORMATIONAL

Description
The SuperSaleDeposit contract lacks validation mechanisms in its constructor and setup functions,
which can lead to invalid configurations during deployment or operation.

1. Constructor Validation:

The constructor does not validate whether the provided addresses (_superAdmin, _admin,
_operator, _treasury) are valid. This issue risks the contract being deployed in an unusable state.

2. Sale Parameters Validation:

The setSaleParameters function does not validate that _minDepositAmount is less than
_maxDepositAmount. This oversight allows invalid configurations where the minimum deposit amount
could exceed or equal the maximum, potentially blocking user participation.

3. Sale Schedule Validation:

The timestamps must be in sequential order (e.g., comingSoon < onlyKyc < tokenPurchase).
Each timestamp must be in the future relative to the current block time (block.timestamp).
This lack of validation could result in misconfigured schedules where the sale phases overlap or

occur out of order, leading to operational failures or potentially blocking user participation.

4. Tier Configuration Validation:

Prices (price) and caps (cap) must be always greater than 0, preventing invalid configurations that
could disrupt the sale process.

Caps must be in strict incremental order, ensuring consistency in the sale logic and preventing
unexpected behavior.

Prices must follow logical progressions, providing a predictable and reliable user experience

Code Location

Snipped of code of constructor function from SuperSaleDeposit contract:

constructorconstructor((
 addressaddress _superAdmin _superAdmin,,
 addressaddress _admin _admin,,
 addressaddress _operator _operator,,
 addressaddress _treasury _treasury,,
 IERC20 _usdcAddress IERC20 _usdcAddress,,
 IERC20 _usdtAddress IERC20 _usdtAddress,,
 bytes32bytes32 _merkleRoot _merkleRoot

225225
226226
227227
228228
229229
230230
231231
232232
233233

Code of setSaleParameters function from SuperSaleDeposit contract:

Code of setSaleSchedule function from SuperSaleDeposit contract:

Code of _setTiers function from SuperSaleDeposit contract:

BVSS

AO:S/AC:L/AX:H/R:N/S:U/C:N/A:C/I:N/D:C/Y:N (0.8)

)) {{
 treasury treasury == _treasury _treasury;;
 USDC USDC == _usdcAddress _usdcAddress;;
 USDT USDT == _usdtAddress _usdtAddress;;

233
234234
235235
236236

functionfunction setSaleParameterssetSaleParameters((uint256uint256 _minDepositAmount _minDepositAmount,, uint256uint256 _maxDepos _maxDepos
externalexternal
whenPausedwhenPaused
onlyRoleonlyRole((ADMIN_ROLEADMIN_ROLE))

{{
saleParameters saleParameters == SaleParametersSaleParameters((_minDepositAmount_minDepositAmount,, _maxDepositAmoun _maxDepositAmoun
emitemit SaleParametersUpdateSaleParametersUpdate((msgmsg..sendersender,, _minDepositAmount _minDepositAmount,, _maxDeposi _maxDeposi

}}

267267
268268
269269
270270
271271
272272
273273
274274

functionfunction setSaleSchedulesetSaleSchedule((uint256uint256 _comingSoon _comingSoon,, uint256uint256 _onlyKyc _onlyKyc,, uint256uint256
externalexternal
whenPausedwhenPaused
onlyRoleonlyRole((ADMIN_ROLEADMIN_ROLE))

{{
saleSchedule saleSchedule == SaleScheduleSaleSchedule((_comingSoon_comingSoon,, _onlyKyc _onlyKyc,, _tokenPurchase _tokenPurchase));;
emitemit SaleScheduleUpdateSaleScheduleUpdate((msgmsg..sendersender,, _comingSoon _comingSoon,, _onlyKyc _onlyKyc,, _tokenPu _tokenPu

}}

283283
284284
285285
286286
287287
288288
289289
290290

functionfunction _setTiers_setTiers((TierTier[[44]] memorymemory _tiers _tiers)) privateprivate {{
forfor ((uint256uint256 i i == 00;; i i << 44;; i i++++)) {{

tierstiers[[ii]] == _tiers _tiers[[ii]];;
}}

maxTotalFunds maxTotalFunds == _tiers _tiers[[33]]..capcap;;

emitemit TiersUpdateTiersUpdate((msgmsg..sendersender,, _tiers _tiers));;
}}

460460
461461
462462
463463
464464
465465
466466
467467
468468

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:H/R:N/S:U/C:N/A:C/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:H/R:N/S:U/C:N/A:C/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:H/R:N/S:U/C:N/A:C/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:H/R:N/S:U/C:N/A:C/I:N/D:C/Y:N

Recommendation
It is recommended to address these vulnerabilities, implement the following validation mechanisms:

1. Constructor Validation:

Add a check in the constructor to ensure that _superAdmin, _admin, _operator, and _treasury are
not address(0).

2. Sale Parameters Validation:

Modify the setSaleParameters function to validate that _minDepositAmount is strictly less than
_maxDepositAmount.

3. Sale Schedule Validation:

Update the setSaleSchedule function to enforce sequential order and future timestamps for the
sale phases.

4. Tier Configuration Validation:

Update the setTiers function to validate each tier for logical prices and incremental caps.

Remediation

SOLVED: The Superseed team has solved this issue by adding the corresponding validations.

Remediation Hash
https://github.com/superseed-xyz/community-raise-contracts/commit/092fc40e75d95a1ab90a63218b1
76ba2107076a6

https://github.com/superseed-xyz/community-raise-contracts/commit/092fc40e75d95a1ab90a63218b176ba2107076a6
https://github.com/superseed-xyz/community-raise-contracts/commit/092fc40e75d95a1ab90a63218b176ba2107076a6

7. 4 I M P RO P E R I N I T I A L I Z AT I O N O F PAU SA B L E C O N T R AC T

// INFORMATIONAL

Description
During the development of this project, the constructor of the Pausable contract from OpenZeppelin has
been modified to initialize the contract in a paused state, while the default behavior is to initialize it in
an unpaused state.

Although this approach might achieve the intended functionality, it introduces significant risks:

1. Compatibility Issues:

Changing the behavior of a widely used and audited library like Pausable can lead to compatibility
problems with future updates or other contracts, depending on its standard behavior.

2. Maintenance Challenges:

Any updates to the Pausable library will require manual integration of these custom changes,
complicating maintenance and increasing the risk of introducing bugs.

3. Deviation from Standards:

The OpenZeppelin Pausable contract is designed to initialize in an unpaused state by default.
Modifying this standard breaks the expectations of auditors and developers familiar with the library.

4. Potential Errors:

Custom changes to library code may inadvertently introduce errors or cause unexpected behavior.

Code Location

Code of constructor function from Pausable dependency:

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (0.5)

Recommendation
It is recommended not to change the default behavior of OpenZeppelin's Pausable contract. Revert any
modifications made to the library, and instead use the _pause() function provided by Pausable in the

 /**/**
 * @dev Initializes the contract in unpaused state. * @dev Initializes the contract in unpaused state.
 */ */
 constructorconstructor(()) {{
 _paused _paused == truetrue;;
 }}

3838
3939
4040
4141
4242
4343

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

constructor to initialize the contract in a paused state.

Remediation

SOLVED: The Superseed team has solved this issue by including the call to _pause function in the
constructor and leaving the Pausable contract without modifications.

Remediation Hash
https://github.com/superseed-xyz/community-raise-contracts/commit/b3304a121e663f6b2c025e5027
0b4ce8bf512e04

8 . AU TO M AT E D T EST I N G

STATIC ANALYSIS REPORT

D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After Halborn
verified the smart contracts in the repository and was able to compile them correctly into their abis and
binary format, Slither was run against the contracts. This tool can statically verify mathematical
relationships between Solidity variables to detect invalid or inconsistent usage of the contracts' APIs
across the entire code-base.

The security team assessed all findings identified by the Slither software, however, findings with related
to external dependencies are not included in the below results for the sake of report readability.

S l i t h e r R e s u l t s

The findings from the Slither scan have not been included in the report, as they were all related to third-
party dependencies or false positives.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://github.com/superseed-xyz/community-raise-contracts/commit/b3304a121e663f6b2c025e50270b4ce8bf512e04
https://github.com/superseed-xyz/community-raise-contracts/commit/b3304a121e663f6b2c025e50270b4ce8bf512e04

