
SuperSale Security Review
Pashov Audit Group

Conducted by: unforgiven, Shaka, ast3ros
November 25th - November 27th

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About SuperSale
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Medium Findings
[M-01] withdrawAssets will always revert
[M-02] Wrong calculation of tokens to transfer will
break deposit flow

8.2. Low Findings
[L-01] Last deposit vulnerable to DOS
[L-02] Centralization risk for admin functions
[L-03] Incorrect assumption of USDC and USDT value
[L-04] Small division truncation
[L-05] The lower total amount of tokens sold due to
rounding

1

2

2

2

2

3

3
3
4

4

5

7

7

7

8

12

12

12

13

13

14

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the superseed-xyz/community-raise-contracts
repository was done by Pashov Audit Group, with a focus on the security aspects
of the application's smart contracts implementation.

4. About SuperSale
The Supersale smart contract enables users to buy tokens during a structured sale,
accepting USDC or USDT as payment. It uses tiered pricing, purchase limits, and
Merkle proofs for the whitelist verification.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

3

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - 7a28d3bfa5d26e736d755a5b8db0a40514150359

fixes review commit hash - 717d1116edbc2206f202afce23019d505759fe4d

Scope

The following smart contracts were in scope of the audit:

SuperSaleDeposit

4

https://github.com/superseed-xyz/community-raise-contracts/tree/7a28d3bfa5d26e736d755a5b8db0a40514150359
https://github.com/superseed-xyz/community-raise-contracts/tree/717d1116edbc2206f202afce23019d505759fe4d

7. Executive Summary
Over the course of the security review, unforgiven, Shaka, ast3ros engaged with
SuperSale to review SuperSale. In this period of time a total of 7 issues were
uncovered.

Protocol Summary
Protocol
Name SuperSale

Repository https://github.com/superseed-xyz/community-raise-
contracts

Date November 25th - November 27th

Protocol Type Token sale

Findings Count
Severity Amount

Medium 2

Low 5

Total Findings 7

5

Summary of Findings
ID Title Severity Status

[M-01] withdrawAssets will always revert Medium Resolved

[M-02] Wrong calculation of tokens to
transfer will break deposit flow Medium Resolved

[L-01] Last deposit vulnerable to DOS Low Resolved

[L-02] Centralization risk for admin
functions Low Resolved

[L-03] Incorrect assumption of USDC and
USDT value Low Acknowledged

[L-04] Small division truncation Low Acknowledged

[L-05] The lower total amount of tokens sold
due to rounding Low Resolved

6

8. Findings

8.1. Medium Findings

[M-01] withdrawAssets will always revert

Severity
Impact: Low

Likelihood: High

Description
While the contract is not expected to receive any assets, the withdrawAssets
function is provided to allow the admin to withdraw any assets that the
contract may have received, presumable by mistake.

withdrawAssets uses the fromStage modifier to ensure that the contract is in
the Completed stage.

function withdrawAssets(address recipient, IERC20 asset)
 external
 onlyRole(ADMIN_ROLE)
 @> fromStage(Stages.Completed)

However, this modifier reverts when the current stage is Completed .

modifier fromStage(Stages _requiredStage) {
 Stages _currentStage = getCurrentStage();

 // comingSoon = 0, onlyKyc = 1, tokenPurchase = 2, completed = 3
 @> if
 (_requiredStage > _currentStage || _currentStage == Stages.Completed) {
 revert WrongStage(msg.sig, _currentStage, _requiredStage);
 }

This means that withdrawAssets will always revert

Recommendations
7

function withdrawAssets(address recipient, IERC20 asset)
 external
 onlyRole(ADMIN_ROLE)
- fromStage(Stages.Completed)
 {
+ Stages _currentStage = getCurrentStage();
+ if (_currentStage != Stages.Completed) {
+ revert WrongStage(msg.sig, _currentStage, Stages.Completed);
+ }
 uint256 contractBalance = asset.balanceOf(address(this));

[M-02] Wrong calculation of tokens to
transfer will break deposit flow

Severity
Impact: High

Likelihood: Low

Description
The private function _calculateTokensToTransfer is used to calculate the
amount of tokens to transfer to the user based on the amount of funds
deposited. When the cap of the current tier is reached, the function iterates
over the remaining tiers until the amount in is reached.

In order to know if it is required to move to the following tier, it is checked if
_remainingAmount is less or equal to the cap of the current tier. This is
incorrect, as tier caps are cumulative, and _remainingAmount should be
compared to the marginal amount of the tier instead.

In the same way, when the condition evaluates to false, the _computeTokens
should receive the marginal amount of the tier instead of the cap.

8

for (uint256 i = (_activeTierIndex + 1); i < _tiers.length; i++) {
 _tier = _tiers[i];

 @> if (_remainingAmount <= _tier.cap) {
 resultingTokens_ += _computeTokens
 (_remainingAmount, _tier.price);
 resultingTierIndex_ = i;
 break;
 }

 @> resultingTokens_ += _computeTokens(_tier.cap, _tier.price);
 _remainingAmount -= _tier.cap;
 }

The direct outcome of this issue is that users will be able to buy tokens at a
lower price than expected.

For example, if the user deposits 6_000_000 USDC, the first 2_000_000
USDC will buy tokens at the price of the first tier and 4_000_000 USDC will
buy tokens at the price of the second tier. This is incorrect, as the cap of the
second tier is 4_022_400 USD, so any amount above this should be bought at
the price of the third tier.

What is more important, this will cause the next deposit to revert due to an
underflow in the following line:

uint256 _remainingTierCap = _tier.cap - _totalFundsCollected;

This is because _totalFundsCollected will be 6_000_000e6, while
_tier.cap will be 4_022_400e6.

As a result, no more deposits will be possible in the contract.

Proof of concept

9

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;

import "forge-std/Test.sol";
import { SuperSaleDeposit, IERC20 } from "contracts/SuperSaleDeposit.sol";
import { ERC20Mock } from "contracts/mocks/ERC20Mock.sol";

contract AuditTests is Test {
 address alice = makeAddr("Alice");
 address bob = makeAddr("Bob");
 address admin = makeAddr("Admin");
 address operator = makeAddr("Operator");
 address treasury = makeAddr("Treasury");

 bytes32 merkleRoot;
 bytes32[] proofAlice;
 bytes32[] proofBob;
 ERC20Mock usdc;
 ERC20Mock usdt;
 SuperSaleDeposit ssd;

 function setUp() public {

 merkleRoot = 0xd3065b0f6565f0bd25fb4a4c8244880cbb025dbee3fca8058e69a8
 proofAlice.push
 (0xf21944a07e01d96dde2b17ede609c9175358722d5933b0177f1f978164c35503);
 proofBob.push
 (0x49167babc98c47d7595b258ed848414135923f3e527a3ddf2c1bc11f74e18053);

 usdc = new ERC20Mock("USD Coin", "USDC", 6);
 usdc.mint(alice, 21_000_000e6);
 usdc.mint(bob, 21_000_000e6);
 usdt = new ERC20Mock("Tether", "USDT", 6);
 usdt.mint(alice, 21_000_000e6);
 usdt.mint(bob, 21_000_000e6);

 ssd = new SuperSaleDeposit(
 address(this),
 admin,
 operator,
 treasury,
 IERC20(address(usdc)),
 IERC20(address(usdt)),
 merkleRoot
);

 vm.startPrank(admin);
 ssd.setSaleSchedule(
 block.timestamp + 1 days,
 block.timestamp + 2 days,
 block.timestamp + 3 days
);
 ssd.setSaleParameters(10e6, 20_000_000e6);
 ssd.unpause();
 vm.stopPrank();
 }

 function test_depositUSDC() public {
 skip(2 days);

 vm.startPrank(alice);
 usdc.approve(address(ssd), type(uint256).max);
 ssd.depositUSDC(6_000_000e6, proofAlice);

 uint256 activeTierIndex = ssd.activeTierIndex();
 assertEq(activeTierIndex, 1);

10

 vm.expectRevert(abi.encodeWithSignature("Panic(uint256)", 0x11));
 ssd.depositUSDC(1_000e6, proofAlice);
 vm.stopPrank();
 }
}

Recommendations
function _calculateTokensToTransfer(
 uint256 _amount,
 uint256 _totalFundsCollected,
 uint256 _activeTierIndex,
 Tier[4] memory _tiers
-) private pure returns (uint256, uint256) {
+) private view returns (uint256, uint256) {
 (...)
- if (_remainingAmount <= _tier.cap) {
+ if (_totalFundsCollected + _amount <= _tier.cap) {
 resultingTokens_ += _computeTokens(_remainingAmount, _tier.price);
 resultingTierIndex_ = i;
 break;
 }

- resultingTokens_ += _computeTokens(_tier.cap, _tier.price);
- _remainingAmount -= _tier.cap;
+ uint256 _tierAmount = _tier.cap - tiers[i - 1].cap;
+ resultingTokens_ += _computeTokens(_tierAmount, _tier.price);
+ _remainingAmount -= _tierAmount;

11

8.2. Low Findings

[L-01] Last deposit vulnerable to DOS
In the _verifyDepositConditions function, there is a strict check that requires
the deposit amount to be less than or equal to the remaining cap:

uint256 _remainingCap = _getRemainingCap();
 if (_amount > _remainingCap) {
 revert InvalidPurchaseInput(
 msg.sig, bytes32("_amount"), bytes32
 ("exceeds maxTotalFundsCollected"), _remainingCap
);
 }

An attacker can prevent legitimate users from completing their final deposits
when the sale is close to reaching maxTotalFunds by front-running their
transactions with a minDepositAmount deposit to decrease the remaining cap,
causing their transactions to revert because the amount > remaining cap .

It's recommended to allow partial deposits by adjusting the amount to the
remaining cap:

if (_amount > _remainingCap) {
 _amount = _remainingCap;
 }

[L-02] Centralization risk for admin
functions

Some of the admin functions are allowed to be called in unnecessary stages
that can cause harm for protocol or user if they are not used property. Code
allows function setMerkleRoot() to be called after the KYC stage and it
possible to call it in the purchase stage too and remove user from whitelist
while there were in the whitelist before. Also code allows setTiers() to be
called in all the stages and calling this function in the purchase stage and
changing the tiers would cause different token price for different users. Code
should only allow those functions to be called during the KYC stage and not
after that.

12

[L-03] Incorrect assumption of USDC and
USDT value

The SuperSaleDeposit contract directly accepts USDC and USDT deposits
with the implicit assumption that both stablecoins maintain a 1:1 peg with
USD. This assumption is used in critical price calculations for token purchases
across all tiers. For example, when calculating token amounts in
_computeTokens :

function _computeTokens
 (uint256 _amount, uint256 _price) private pure returns (uint256) {
 return (_amount * 1e18) / _price;
 }

The _amount is treated as an equivalent USD value without any price
verification. This creates risks because stablecoins can and have experienced
significant depegs:

In March 2023, USDC depegged to $0.88 following the Silicon Valley Bank
collapse.
USDT has experienced multiple depegs, dropping as low as $0.95.

If stablecoins trade below $1, users could purchase tokens at an unintended
discount. If stablecoins trade above $1, users would overpay for tokens,
potentially exceeding intended tier caps in USD terms.

Consider using Chainlink oracle to get the price of USDC and USDT to
calculate the amount of token purchase.

[L-04] Small division truncation
The contract uses a precalculated price for each tier based on the target amount
of tokens to be sold per tier.

function _computeTokens
 (uint256 _amount, uint256 _price) private pure returns (uint256) {
 // multiply _amount by 10^(12+6)
 // because the tier prices are already stored as USD 1 = 1 * 10^12
 // adding 6 decimals precision for the token
 return (_amount * 1e18) / _price;
 }

13

However, depending on the amounts sent by the users, the total amount of
tokens sold may not match the target amount due to the accumulation of
division truncation.

Consider the following example:

The contract is currently in Tier 1, where the price is 9_090_909_091e6.

A) Alice deposits 500 USDC
Alice is credited 54999999999 tokens (500e6 * 1e18 / 9_090_909_091e6).

B) Bob deposits 250 USDC twice
Bob is credited 27499999999 tokens
 (250e6 * 1e18 / 9_090_909_091e6) twice, for a total of 54999999998 tokens.

As we can see, there is a discrepancy of 1 token due to division truncation in
the calculation of the tokens to be transferred. This discrepancy may
accumulate over time and result in a significant difference between the total
amount of tokens sold and the target amount.

Instead of precalculating the prices for each tier, calculate the tokens purchased
based on the target maximum amount of tokens to be sold per tier and the
current amount of tokens sold.

This is a pseudocode example of how the calculation could be done:

if (amount < _remainingTierCap) {
 tokensToTransfer = remainingTierTargetTokens * amount / remainingTierCap;
} else {
 tokensToTransfer += remainingTierTargetTokens;
 remainingAmount -= _remainingTierCap;
 // continue looping through the tiers
 // ...
}

The maximum difference is 1*10^-6.

[L-05] The lower total amount of tokens
sold due to rounding

The project targets the following maximum amount of tokens sold:

14

Tier 1: 220 M
Tier 2: 210 M
Tier 3: 206 M
Tier 4: 1,304 M
Bonus: 60 M

This means that the maximum amount of tokens sold globally is 2,000 M. The
maximum amount of tokens purchased should be 1,940 M.

On deployment, the contract sets the price and cap for each tier so that the
target amounts are reached. However, the values of the prices are not correct,
as they are rounded with 1e6 precision.

The result is that the total amount of tokens sold per tier is underestimated in
some tiers and overestimated in others, and the total amount of tokens sold
globally will be lower than the target.

Proof of concept:

15

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;

import "forge-std/Test.sol";
import { SuperSaleDeposit, IERC20 } from "contracts/SuperSaleDeposit.sol";
import { ERC20Mock } from "contracts/mocks/ERC20Mock.sol";

contract AuditTests is Test {
 address alice = makeAddr("Alice");
 address bob = makeAddr("Bob");
 address admin = makeAddr("Admin");
 address operator = makeAddr("Operator");
 address treasury = makeAddr("Treasury");

 bytes32 merkleRoot;
 bytes32[] proofAlice;
 bytes32[] proofBob;
 ERC20Mock usdc;
 ERC20Mock usdt;
 SuperSaleDeposit ssd;

 function setUp() public {

 merkleRoot = 0xd3065b0f6565f0bd25fb4a4c8244880cbb025dbee3fca8058e69a8
 proofAlice.push
 (0xf21944a07e01d96dde2b17ede609c9175358722d5933b0177f1f978164c35503);
 proofBob.push
 (0x49167babc98c47d7595b258ed848414135923f3e527a3ddf2c1bc11f74e18053);

 usdc = new ERC20Mock("USD Coin", "USDC", 6);
 usdc.mint(alice, 21_000_000e6);
 usdc.mint(bob, 21_000_000e6);
 usdt = new ERC20Mock("Tether", "USDT", 6);
 usdt.mint(alice, 21_000_000e6);
 usdt.mint(bob, 21_000_000e6);

 ssd = new SuperSaleDeposit(
 address(this),
 admin,
 operator,
 treasury,
 IERC20(address(usdc)),
 IERC20(address(usdt)),
 merkleRoot
);

 vm.startPrank(admin);
 ssd.setSaleSchedule(
 block.timestamp + 1 days,
 block.timestamp + 2 days,
 block.timestamp + 30 days
);
 ssd.setSaleParameters(250e6, 20_000_000e6);
 ssd.unpause();
 vm.stopPrank();
 }

 function test_totalSold() public {
 skip(2 days);

 vm.prank(alice);
 usdc.approve(address(ssd), type(uint256).max);

 uint256 amountDeposited;
 uint256 purchasedTokens;
 uint256 prevCap;
 uint256 prevPurchasedTokens;

16

 for (uint256 i = 0; i < 4; i++) {
 (, uint256 cap) = ssd.tiers(i);
 uint256 tierAmount = cap - prevCap;
 prevCap = cap;

 vm.prank(alice);
 ssd.depositUSDC(tierAmount, proofAlice);

 (amountDeposited, purchasedTokens) = ssd.userDeposits(alice);
 console.log(
 "purchasedtier%s:%s",
 i+1,
 purchasedTokens-prevPurchasedTokens
);
 prevPurchasedTokens = purchasedTokens;
 }

 console.log("deposited total: %s", amountDeposited);
 console.log("purchased total: %s", purchasedTokens);
 }
}

Console output:

purchased tier 1: 219999999997800
 purchased tier 2: 210000000010383
 purchased tier 3: 206000000005667
 purchased tier 4: 1303999999956602
 deposited total: 20000000000000
 purchased total: 1939999999970452

Recommendation:

_setTiers(
 [
- Tier(9090909091e6, 2_000_000e6), // 0
- Tier(9630476190e6, 4_022_400e6), // 1
- Tier(9880582524e6, 6_057_800e6), // 2
- Tier(10691871166e6, 20_000_000e6) // 3
+ Tier(9090909090909090, 2_000_000e6), // 0
+ Tier(9630476190476190, 4_022_400e6), // 1
+ Tier(9880582524271844, 6_057_800e6), // 2
+ Tier(10691871165644171, 20_000_000e6) // 3
]
);

17

